Calculus I	Name:	
Study Guide 15	Class:	
Due Date:	Score:	
	No Work \Leftrightarrow No Points	
Use Per	Acil Only \Leftrightarrow Be Neat & Orga	nized
1. Given $f(x) = \frac{2x}{x-3}$.		
*** •	ain of $f(x)$ in interval notation.	
· / · · ·	• ()	
		(a)
(b) (2 points) Find $f'(x)$		(a)
		(b)
(c) (3 points) Find the point	as on the graph of $f(x)$ where f	f'(x) = 0 or undefined.
		(c)
(d) (2 points) Find $f''(x)$		(8)
		(d)
(e) (3 points) Find the point	as on the graph of $f(x)$ where	* /
		(e)

- 2. Given $f(x) = \frac{1}{x^2 + 1}$.
 - (a) (2 points) Find the domain of f(x) in interval notation.

(a) _____

- (b) (2 points) Find f'(x)
- (c) (2 points) Find the points on the graph of f(x) where f'(x) = 0 or undefined.
- (d) (2 points) Find f''(x)
- (e) (2 points) Find the points on the graph of f(x) where f''(x) = 0 or undefined.

(e) _____

3. Suppose $\theta = \theta(t)$ and h = h(t), differentiate both sides with respect to t, then solve for $\frac{d\theta}{dt}$.

(a) (2 points) $\tan \theta = \frac{h}{100}$

(a) _____

(b) (2 points)
$$\sin \theta = \frac{h}{100}$$

- 4. Given $f(x) = (x-1)^4$.
 - (a) (2 points) Find f'(x)
 - (b) (2 points) Solve f'(x) = 0
 - (c) (2 points) Find the points on the graph of f(x) where f'(x) = 0

 - (d) (2 points) Find f''(x)
 - (e) (2 points) Solve f''(x) = 0
 - (f) (2 points) Find the points on the graph of f(x) where f''(x) = 0

(f) _____

- 5. Given $f(x) = \frac{x}{x^2 + 1}$.
 - (a) (2 points) Find the domain of f(x) in interval notation.
- (a) _____

(b) (2 points) Find f'(x)

- (b) _____
- (c) (3 points) Find the points on the graph of f(x) where f'(x) = 0 or undefined.

(d) (2 points) Find f''(x)

(c) _____

- (d) _____
- (e) (3 points) Find the points on the graph of f(x) where f''(x) = 0 or undefined.

(e) _____